ATSC5010 Homework #4 (Nov 13)

Due beginning of class November 20

- 1. Compute the wavelength of EM waves of the following frequency:
 - a. Ultra-violet (UV) light 10¹⁶ Hz
 - b. Visible light 7.5 X 10¹⁴ Hz
 - c. Infrared light 3 X 10¹⁴ Hz
 - d. Microwaves $3 \times 10^{12} \text{ Hz}$
 - e. Radiowaves 3 X 10⁸ Hz
- 2. Consider a microwave signal from the Wyoming cloud radar (frequency 95 GHz); after traveling through a given medium for 1 km, its flux density has decreased by 20%. Determine the imaginary part of the complex index of refraction for that medium.
- 3. A visible light source emits 2 W of radiation uniformly. The wavelength of the light is 500 nm.
 - a. How many photons per second are emitted by the source?
 - b. What is the flux of photons (number of photons) through a 1 mm² surface at a distance of 1 km? 10 km? 100 km?
- 4. Given the following parameters: distance to moon—3.84X10⁵ km; distance to sun—1.496X10⁸ km; radius of moon—1.74X10³ km; and radius of sun—6.96X10⁵ km. Compute the following:
 - a. Angular diameter (in degrees) subtended by the sun and moon;
 - b. Solid angle subtended by the sun and the moon; and
 - c. Which appears larger on earth and by how much?
- 5. The average broadband solar flux that reaches the top of the atmosphere is 1370 W m^{-2} measured on a plane normal to beam.
 - a. Using the solid angle computed from question (4b), compute the average radiance of the sun's surface.
 - b. Determine the incident flux density at 25 deg. latitude during the spring equinox at solar noon. (include a sketch to show how this was calculated)