Laboratory studies of the ice nucleating ability of pollen and model simulations of the effects of biological aerosol particles on cloud microphysics

> Karoline Diehl, Martin Simmel, Sabine Wurzler, Nadine von Blohn, Subir K. Mitra

University of Mainz, Germany Institute of Atmospheric Physics Max-Planck Institute of Chemistry, Mainz Institute for Tropospheric Research, Leipzig, Germany

Primary biological aerosol particles

- ubiquitous component
- contribution to total atmospheric aerosol: urban/rural air: 25% on average remote marine air: 10 to 20% (Matthias-Maser and Jaenicke, 1995; Gruber et al., 1998) <u>but</u> other references: 1 to 10%

Ice nucleating efficiency of biological aerosol particles

(freezing activating temperatures from literature)

*	bacteria	-2°C
*	lichen	-2°C
*	fungi	-3°C
*	marine plankton	-4°C
*	leaf litter	-4°C
*	pollen	-5°C to -15°C

higher freezing temperatures than other ice nuclei like mineral dust or soot

Ice nucleating efficiency of pollen

pollen in the atmosphere

- radii from 5 to 50 μm
- lifted in high altitudes, long residence times (low sink velocities)
- concentrations temporarily comparable to those of ice nuclei

(Gregory, 1978; Linskens and Jorge, 1986)

laboratory experimental techniques: Mainz vertical wind tunnel

- \succ single drops freely floated at their terminal velocity
- > super-cooled drops at temperatures down to -30°C

conifer (*pine*)

- immersion freezing
- contact freezing

Results: Ice nucleating efficiency of pollen

contact freezing versus immersion freezing

Results: Ice nucleating efficiency of pollen

* not restricted to single pollen types

* **contact freezing** more efficiently than immersion freezing

* freezing activating temperatures: -5 to -15°C

* median freezing temperatures: -12 to -21°C

order of freezing efficiency:			releasing times:	
	alder		February to March	
birch		April		
	oak		April to May	
	pine		May to June	
	orchard grass		June to July	
	Kentucky blue grass		May to July	
	Lombardy poplar		March to April	
	redtop grass		June to August	

possible explanation for freezing ability of pollen: biological freezing tolerance to protect the interior of the cells

(Diehl et al., 2002, Atm. Res., 61; v. Blohn et al., 2005, Atm. Res., 78)

Cloud model simulations: Convective mixed-phase cloud

- adiabatic air parcel model with entrainment
- variable soluble and insoluble fractions of the particles
- sectional 2-dimensional description of the cloud microphysics
- warm microphysics
- * cold microphysics
 - **_____ drop freezing in immersion and contact modes**
 - **_____ growth of ice particles by deposition of water vapor**
 - **_____** collision between super-cooled drops and ice particles

(Simmel and Wurzler, 2006, Atm. Res., 80; Diehl et al., 2006, JGR, 111)

Immersion freezing

Contact freezing

freezing equations:

considering different ice nucleating efficiencies (Diehl et al., 2006, JGR, 111)

$$-\frac{dN_f}{dt} = N_u a B_{h,i} V_d \exp(-aT) \frac{dT}{dt}$$

$$N_{f} = -N_{0} \left(a_{h,c} T + b_{h,c} \right)$$

constants $B_{h,i}$, $a_{h,c}$, $b_{h,c}$ derived from laboratory experiments:

(Hoffer, 1961; Pitter and Pruppacher, 1973; Levin and Yankofski, 1983; Diehl and Mitra, 1998; Gorbunov et al., 2001; Diehl et al., 2001, 2002)

biological particles (bacteria, leaf litter, pollen)

mineral particles (montmorillonite, kaolinite)

soot particles (large and small)

freezing point depression Koop et al. (2000) collision kernel *Kerkweg et al. (2003)*

Present initialization and scenarios for sensitivity studies

- convective temperature and dew point profiles
- aerosol particle size distribution with a soluble fraction _ = 0.5
- temperature difference parcel environment: 1 K
- defined fractions of the aerosol particles allowed as ice nuclei
- limited sizes of the ice nuclei

Scenarios:

1	bacteria	1%	$0.2 \ \mu m \leq r \leq 1 \ \mu m$
2	spores	1%	r ≥ 0.5 μm
3	leaf litter	1%	r ≥ 1 μm
4	pollen	1%	r ≥ 5 μm
5	montmorillonite	20%	all sizes
6	kaolinite	20%	all sizes
7	soot	10%	r≤0.1 μm
8	soot	10%	r ≤ 1 μm

Results: Effect of ice formation on drop and ice particle numbers

liquid and frozen drop numbers in cm⁻³ as functions of temperature

Results: Effect of ice formation on drop and ice particle numbers

liquid and frozen drop numbers in cm⁻³ as functions of temperature

spores, $r > 0.5 \mu m$ altitude (km) altitude (km) bacteria, $0.2 \ \mu m < r < 1 \ \mu m$ vertical velocity (m/s) vertical velocity (m/s) leaf litter, $r > 1 \ \mu m$ pollen, $r > 5 \mu m$ altitude (km) altitude (km) vertical velocity (m/s) vertical velocity (m/s)

Results: Effect of ice formation on vertical cloud dynamics

altitude in km as functions of vertical velocity

Results: Effect of ice formation on vertical cloud dynamics

Conclusions

Laboratory experiments:

- * ice nucleating efficiencies of pollen at relatively warm temperatures
- reasons for ice nucleating ability of biological particles might have a biological background (ensure the survival)

Model simulations:

- fractions of biological particles were much lower than dust or soot particles
 <u>but:</u> effects on ice particle numbers, ice water content, and the
 vertical clouds dynamics were in the same order of magnitude
- importance of biological particles for cloud microphysics
 should not be neglected against mineral and soot particles

Future:

- * airborne measurements of biological aerosol particles to estimate their effects; e.g., pollen may temporarily be present in the atmosphere in huge amounts
- * model simulations with measured biological particle distributions