High-resolution ice nucleation spectra of sea-ice bacteria: Implications for cloud formation and life in frozen environments

Drawn by Christopher Krembs

Brian Swanson Karen Junge

Dept. of Earth and Space Sciences Applied Physics Laboratory University of Washington

Introduction

- Objectives
- >> To better understand the interaction of bacteria with ice
- >> To assess the ice initiation potential of polar marine psychrophiles
- Significance
- >> limits of life
- ⇒ active sea-ice bacteria to -20°C (and below Junge et al.,2004 & 2006)
- » sea-ice ecosystem
- ⇒ initial freezing events (Parker et al.,1985)
- >> cloud formation
- source of ice forming particles in Arctic clouds (Bigg and Leck, 2001)

 After all, many bacteria are CCN active (Bauer et al. 2003)
- » astrobiology
- Fundamental question:

Do psychrophiles express ice nucleation activity as a means to enhance survival in subzero environments -- whether in sea ice or in the upper atmosphere?

Sea-ice bacterial isolates:

Arctic: Chukchi Sea

Antarctica: McMurdo Sound

Bacteria attached to ice wall (Junge et al.2001)

Fig. 2. Phylogenetic analysis of Arctic sea-ice bacteria and closest relatives as determined by Blast Genbank search (Junge et al., 2000).

Bacteria strains used for INA tests marked red.

Freezing Tube Apparatus

- High repetition rates (~5 hz) - Well controlled solution concentration
- Telemicroscopic droplet images
- No substrate-induced nucleation

D/T = Depolarized scattering intensity/Total scattering intensity

From D/T at various heights we extract the fraction of frozen droplets F(T)

Ice nucleation spectra for sea-ice bacteria isolates

Summary

- We have used a novel freeze tube method to study biogenic ice nucleation.
- We find substrate-free methods are useful. Anomalously high ice nucleation temperatures can be obtained if a substrate is not sufficiently passivated for low-temperature nucleation studies.
- Results from 17 different sea-ice bacteria and virus isolates show limited Ice nucleation activity
 - Ice inititation mediated by bacteria and virus isolates was at or near homogeneous nucleation temperature (<-37°C to -44°C)
- Results indicate that avoidance of ice formation in close proximity of their cells may be one of the cold-adaption and survival stragegies for sea-ice bacteria and could be imporatnt for their ability to remain active at temperatures far below the freezing point of seawater.